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ABSTRACT

The far ultraviolet (FUV) imager for the Intemational Solar Terrestrial

Physics (ISTP) mission is designed to image four features of the aurora: O I

lines at 130.4 nm and 135.6 nm and the N2 Lyman-Birge-Hopfield (LBH) bands

between 140 nm - 160 nm (LBH long) and 160 nm -180 nm (LBH long). In this

paper we report the design and fabrication of narrow-band and broadband filters

for the ISTP FUV imager. Narrow-band filters designed and fabricated for the

O I lines have a bandwidth of less than 5 nm and a peak transmittance of 23.9%

and 38.3% at 130.4 nm and 135.6 nm, respectively. Broadband filters designed

and fabricated for LBH bands have the transmittance close to 60%. Blocking of

out-of-band wavelengths for all filters is better than 5x10-3% with the

transmittance at 121.6 nm of less than 10-6%.
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1. INTRODUCTION

Airglow emissions in the far ultraviolet can provide valuable information

on auroral energy input and on the identity and the characteristic energy of

precipitating particles. Photometric imaging of terrestrial auroral emissions,

constitutes an important aspect of NASA's role in the ISTP mission.

The primary objectives for the far Ultraviolet Imager (UVI) are to acquire

coherent global images of the earth's aurora at two FUV emission lines (130.4

nm and 135.6 nm) and two emission bands (140-160 nm and 160-180 nm), from

altitudes between six and nine earth's radii (RE), with adequate spectral f'dtering



to allow the total energy flux and energy characteristics of precipitating particles

to be retrieved. The UVI with 0.6 miliradians angular resolution over an 8" field

of view sampled with 39,500 pixels, will provide coherent global auroral images

with unprecedented f'dtering and spatial resolution performance.

The FUV imager consists of three aspherical mirrors with the center of the

object field displaced 6* from the optical axis. This optical design was the first of

a kind to provide both low focal ratio (f/2.9) and good spatial resolution over 8*

field of view in the FUV. The design provides for an unobscured optical

aperture, excellent baffling, flat field, provision for filter insertion and general

compacmess 1.

The overall performance of the instrument depends critically on the filter

performance realized. In order to provide scientifically valuable data the imager

must have two narrow-band filters with bandwidths of less than 5 nm, blocking

for out-of-band wavelengths better than 3x10-3%, with transmittance at 121.6 nm

of less than 10-6% and a peak transmittance of more than 20%. The broadband

filters should have the same blocking for out-of-band wavelengths, 10-12 nm

bandwidths and in-band transmittance greater than 50%.

Prior to the development effort undertaken for the UVI, filters with

required spectral performance were nonexistent. The magnitude of the challenge

can be evaluated when it is recognized that with exception of the bright H Ly ¢t

and OI 130.4 nm features, no far ultraviolet images had been previously achieved

on the fully sunlit side of the earth, because of visible light leakage. The filtering

requirements to extract the total energy flux and energy characteristics of

precipitating auroral electrons are the following: 1) Measurement of N2 Lyman-
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Birge-Hopfield (LBH) bands from 160 - 180 nm (LBH long), and from 140 -

160 nm (LBH short) with better than 90% spectral purity, and 2) Measurement of

OI emissions at 130.4 nm and 135.6 nm with spectral purity of more than 90%.

Narrow-band filters that were commercially available in the FUV

wavelength region from 120 nm to 160 nm had a typical transmittance lower than

15% and full width measured at half of the transmittance maximum (FWHM)

greater than 25 nm. The peak transmittance of the filters centered at the longer

wavelengths from 160 nm - 230 nm were between 20% and 25% with FWHM >_

20 nm.

Malherbe 2 reported the design and the spectral performance of a narrow-

band f'dter centered at the Lyman-a (121.6 nm) with peak transmittance close to

15% and FWHM = 9 nm. Blocking of the wavelengths longer than 160 nm is

better than 10-3%. The filter has relatively high transmittance for the

wavelength region from 126 nm - 135 nm; close to 7% at 126 nm and almost 1%

at 135 nm. This pass window renders the filter not very useful for terrestrial

imaging applications if spectral discrimination of the neighboring atomic oxygen

lines at 130.4 nm and 135.6 nm is desired. A narrow-band filter centered at

202.5 nm is reported by the same author3. The filter has peak transmittance

greater than 85% and FWHM - 2.5 nm. However, the blocking zone of the filter

is very short and the transmittance for wavelengths longer than 220 nm becomes

greater than 85%.

The calculated and experimental spectral performance of a Fabry-Perot-

type narrow-band filter centered at 179 nm was reported by SpiUer4. His

theoretical calculations predicted a narrow-band falter with resolution 2_o/A_ = 60



and a peak transmittance of 25%, but the measured performance had almost a

four times smaller resolution and a much smaller peak transmittance.

Discrepancies between the theoretically predicted and experimentally obtained

spectral curves have been ascribed to the excitation of a surface plasma wave

traveling along the surface of an aluminum film.

A variable bandwidth transmission filter reported by Elias5 had

bandwidths from 7 nm to 20 nm with a peak transmittance from 20% to 40%,

respectively. The filter was centered at 176 nm, and as in the case of other all-

dielectric transmission filters, suffered from pass windows in the longer

wavelength region. Narrow-band filters for the FUV wavelength range from

120 nm to 230 nm with similar optical properties to those listed above were also

reported by some other authors6-9. Broadband filters with bandwidths greater

than 10 nm, which are currently available in the FUV have a relatively low

transmittance, poor out-of-band rejection, and most of them have the shape of a

transmittance spectral curve similar to that of the Fabry-Perot'type f'dters2-9.

Taking all this into account, it becomes obvious that the FUV spectral

range lacked high quality narrow- and broadband f'dters which would satisfy the

filtering requirements of the ISTP imager. Certainly a lack of low absorbing

film materials in the FUV wavelength range for the all-dielectric filters and the

coupling of the incident light into plasma surface waves of the metal for metal-

dielectric f'dters were reasons for this.

Hunterl0 achieved a measure of success in solving this problem by

combining two or more reflectors in a series to achieve the desired spectral

performance for the design of the FUV reflection polarizers and analyzers. The
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idea is that, if sufficiently high reflectivity can be achieved within the passband,

the in-band exponential loss of reflectivity with additional reflective surfaces

becomes insignificant compared with the net out-of-band exponential loss.

However for the approach to be viable, the ratio of in-band to out-of-band

reflectivity at each surface should be of the order of 30, e.g., 90% and 3%,

respectively. Three reflections, for example, then reduce the in-band reflectivity

to 72.9%, whereas the out-of-band reflectivity is reduced to 2.7x10-3% and so

on.

In this paper we report the successful design and fabrication of high-

reflectance narrow-band and broadband reflection filters. These filters are than

combined into a multiple reflector to provide excellent blocking for out-of-band

wavelengths and the desired spectral shape for both narrow-band and broadband

applications. The blocking for shorter out-of-band wavelengths is improved by

means of additional transmission filters. The filter combinations provided better

than originally specified spectral performance of the ISTP far ultraviolet imager.

2. FUV THIN FILM AND SUBSTRATE MATERIALS

The first step in the development of our technology for the design and

fabrication of FUV filters is the determination of optical constants (refractive

index and extinction coefficient) of film materials within the FUV range. Our

laboratory has recently developed the experimental and theoretical techniques for

the determination of the optical constants of films and substrates in the FUV11.

An iterative approach implemented into the thin film design program12 is used to

derive optical constants from photometric measurements13,14.
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On the basis of the measurements conducted to date, it would appear that

only the following bulk materials have useful optical properties for FUV

applications: MgF2 was the only material identified as suitable as a substrate for

transmission filters for wavelength range below 140 nm; BaF2, and SiO2 can be

used as substrate materials for wavelengths above 140 nm and 160 nm,

respectively; Pyrex because of the low cost, excellent mechanical and chemical

resistance, and its susceptibility to a very high quality polishing was found to be

the best substrate for reflection filters. Suitable film materials include BaF2,

CaF2, LaF3, MgF2, A1203, and SiO2. With the knowledge acquired of the

optical constants for these materials, it now becomes possible to design coatings

suitable for such FUV devices as narrow-band and broadband filters 11-19.

3. NARROW-BAND REFLECTION FILTERS

In order to explain FUV narrowband filters, we start from a Fl-multilayer

design conceptl6,17. For the quarterwave (QW) periodic multilayer case where

two film materials have optical thicknesses corresponding to a quarter of a

wavelength, it is known that the maximum reflectance of a periodic stack is given

by20

k n + kt.
R k = 1- 2nno-ST-

rlH nt.
(i)

where nH and nL are refractive indices of high and low index film materials, and

kH and kL are corresponding extinction coefficients.
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The ultimate reflectance, Rk, is usually referred to as the Koppelmann

limit. It should be emphasized that Eq. (I) is derived with some approximations

and cannot replace an exact calculation of the maximum reflectance of a periodic

stack. Furthermore, for wavelength regions in which the refractive index is less

than one, the Koppelmann formula does not give the correct answer for the

ultimate reflectance.

The principle of the H-stack approach is to use a combination of high (H)

and low (L) refractive index dielectric pairs so that H + L = k/'2, where L/H > 1,

and H and L designate the optical thicknesses of high- and low-index film

materials. Since the phase thicknesses of an HL pair add to H, we call stacks

made of such pairs H-stacks or H-multilayers. Thus, a quarterwave stack (QW;

optical thicknesses of layers are k/4) is a special case of H-multilayers with the

ratio L/H -- 1.

In a QW stack the light that is reflected from all interfaces is in phase,

while in a H multilayer the light that is reflected from each HL pair is in phase.

Obviously, QW stacks with low-absorbing film materials (which are available in

visible and infrared parts of the spectrum) provide higher reflectance with fewer

layers than other H-stacks. However, in the FUV and EUV where low-absorbing

high-index film materials do not exist, a H-multilayer with a smaller physical

thickness of H relative to L provides lower absorptance and therefore higher

reflectance of the stackl6-19.

Figure 1 shows maximum reflectance as a function of the L/H ratio of a

35-layer reflection filter designed for 145 nm and 45" angle of incidence using

MgF2 and LaF3. The reflector has a maximum reflectance when the ratio L/H =
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3. This corresponds to the optical thickness of L(MgF2)= 3_8 and H(LaF3) =

X/8. The Koppelmann limit (QW stack; L/H = l) for this design is 89.6%.

As the optical thickness ratio (L/H) of the 1-l-multilayer changes, the high

reflectance bandwidth, or so-called full width at half of the reflectance maximum,

(FWHM) also changes. This property is used to control the high reflectance

bandwidth of the filter. Figure 2 shows the bandwidth of the 35-layer stack

designed for 145 nm and 45" angle of incidence using MgF2 (L) and LaF3 (H) as

a function of L/H ratio.

It is obvious that for the design of a narrowband reflector ratio, L_ has to

be as high as possible. However, an increase of the L/H ratio requires the

addition of more layers to the stack in order to maintain reflectance at its design

maximum. Furthermore, the value of the L/H ratio and therefore the minimum

thickness of an H layer is certainly limited by the feasibility of depositing and

monitoring extremely thin layers. Other important

maximum value of the L/H ratio include substrate

structural properties of the layers.

factors that limit the

surface roughness and

Figure 3 shows the measured net transmittance through three 130.4 nm H

multilayer narrowband reflection filters combined with a transmission filter. A

transmission filter and three reflection f'dters are mounted in the filter box. The

reflection f'dters are 35-layer H-stacks with optical thicknesses H = k/8, and L =

3_./8 designed for 130.4 nm and 45" angle of incidence using MgF2 as the low

(L) and LaF3 as the high refractive index material (H). The transmission filter

is BaF2/MgF2 2-layer absorbing stack deposited on a MgF2 substrate. The peak

transmittance of the combination is greater than 23% with 4.5 nm bandwidth.



The average blocking for out-of-band wavelengths up to 2500 nm is better than

3x10-3% with less than 10-6% transmittance at 121.6 nm (see Figure 7).

Figure 4 shows the measured net transmittance through three narrowband

reflection f'dters centered at 135.6 nm combined with a cut-on transmission filter.

The reflection f'dters are 35-layer 1I stacks with optical thicknesses H = L/8, and

L -- 33./8, where MgF2 is the high and LaF3 is the low refractive index material.

The filters are designed for 135.6 nm and 45* angle of incidence using. The

transmission filter is a BaF2/MgF2 2-layer absorbing stack deposited on a MgF2

substrate. The peak transmittance of the filter combination is greater than 38%

with less than 5 nm bandwidth. The average transmittance for out-of-band

wavelengths (3-< 2500 nm) is less than 3x10-3%, and less than 10-6% at 121.6 nm

(see Figure 7).

4. BROADBAND REFLECTION FILTERS

The pass zone of a broadband filter is bounded by lower and upper

w_ivelengths. Ideally, the spectral components of the incident light with

wavelengths shorter than the lower and longer than the upper wavelength of the

filter, together referred to as the out-of-band spectrum, are rejected. In the

design examples that follow, wavelengths of the out-of-band spectrum are

rejected by means of multiple reflections from QW stacks.

The rejection at shorter wavelengths might be improved by the suitable

choice of the window material, placed at the entrance of a multi-reflector

combination. Windows made of BaF2 and CaF2 absorb wavelengths below 135
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nm, and 125 nm respectively, while Fused Silica and aluminum oxide may be

used for broadband filters with a lower pass limit above 145 nml 1.

Due to the narrower high reflection zone, the FI multilayers with L/H >1

are not suitable for the design of broadband reflectors (see Fig. 2). A QW stack

for which L_ = 1 is a better choice for the design and fabrication of these filters.

Figure 5 shows the measured net transmittance through the combination of three

35-layer QW-stacks (L/H=I) as reflection filters designed for LBH short FUV

bands, with a BaF2 substrate with protective MgF2 coating as the transmission

filter. The reflection filters are designed for 150 nm and 45" angle of incidence

using MgF2 as the low (L) and LaF3 as the high refractive index material (H)

The filter combination has a peak transmittance of more than 60% and a

bandwidth of 11 nm.

Figure 6 shows the measured net transmittance through the filter

combination designed for the LBH long FUV bands. The combination comprises

three 35-layer H-stacks as reflection filters, and a bare fused silica substrate as

the transmission filter. The reflection filters are centered at 170 nm and designed

for 45" angle of incidence using MgF2 as the low (L) and LaF3 as the high

refractive index material (H).

The filter combination shown in Figure 6 has a peak transmittance close to

50% and a bandwidth of 11 nm. The average rejection of the out-of-band

spectrum up to 2500 nm is better than 3x10-3% with the transmittance for

wavelengths below 150 nm of less than 10-6%.
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5. COATING AND TESTING LAB

All thin film depositions during the research for the ISTP program were

made at the University of Alabama in Huntsville, Optical Aeronomy Laboratory,

and spectrophotometric measurements were made at the Space Science

Laboratory of the NASA/Marshall Space Flight Center. The high vacuum

system comprising an e-beam coater consists of a cryo-pump and absorption

pump giving an oil-free environment for all depositions and therefore a very low

probability of hydrocarbon contamination of the films. A quartz crystal monitor

is used for the film thickness and deposition rate monitoring.

The filter substrates were cleaned by the supplier (Acton Research Corp.,

Acton, MA) using the following procedure: optical soap wash, water rinse,

ethanol soak then ultrasonic bath, fresh ethanol rinse, and finally Freon rinse.

The elliptically shaped Pyrex reflection filter substrates range in size from

approximately 6 x 4 cm to 8 x 6 cm The transmission filter substrates made of

fused silica, MgF2, and BaF2 had 5 cm diameter. All substrates were shipped in

dry nitrogen purged delrin holders and were only removed immediately prior to

deposition.

The depositions were made with a fixed voltage (10 kV) electron beam gun

on heated substrates. The films were deposited with deposition rates ranging

from 0.14-0.25 rim/see at pressures below 10-5 Torr. The temperature of the

substrate was monitored with a Chromel-Alumel thermocouple attached to

aluminum substrate holder. The filter substrate temperature was kept at 175"C

during deposition. The substrate and its ring holder were placed on 6 mm thick

stainless steel plate with 50 cm diameter. The source-to-substrate distance was 50
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cm and source-to-oscillator (thickness monitor) distance was 35 cm. After

deposition, the substrates were aLlowed to cool to 30°C, and the vacuum chamber

was vented with dry nitrogen.

Deposited substrates were kept in a clean room environment (class better

than 10 particles(5-0.51_rn/cft.). Although the filters were exposed to the

environment (10 - 20 months) in which only temperature and particle

contamination were controlled the degradation of the spectral performance has

never been detected. Both reflection and transmission filters did not exhibit any

change in the spectral performance after exposure to the simulated high energy

radiation of space environment 21.

Transmittance and reflectance measurements were performed in a

hydrocarbon-free vacuum system at pressure below 10-5 Ton'. A sealed

deuterium lamp with a MgF2 window was used in tandem with 0.2 m

monochromator producing a beam with 1 um spectral resolution. Folding and

collimating optics were used to produce a 1 x 0.74 cm reference beam. An FUV

detector consists of a sodium salycilate coated Pyrex window placed in front of a

bialkali photometerl 1.

6. SUMMARY

The FUV filters designed and fabricated for the ISTP program were made

as combinations of three reflection and one transmission filter. Narrow-band

filtering with a bandwidth of 5 nm and a throughput at the central wavelength of

more than 20% and 35% is achieved at 130.4 and 135.6 nm, respectively, with

the average blocking of out-of-band wavelengths of better than 3x10-3%. In the
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case of broadband filters a multiple reflector centered at 150 and 170 nm

combined with corresponding transmission filters had a bandwidth close to 11 nm

and the transmittance greater than 60% for both LBH bands. The average

blocking of out-of-band wavelengths is better than 3x10-3%.

The idea of utilizing the multiple reflections from H multilayer reflectors

constitutes the basis of the ISTP FUV narrow-band and broadband filters. The

multiple reflector combinations provide spectral performance for narrow and

broadband filters superior to what is currently available with an in-band to out-

of-band ratio of more than 104 which provides measurements of four key FUV

features with spectral purity of 98% for 130.4 nm, 90% for 135.6 nm, 99% for

LBH short and 99% for LBH long. Together with a solar blind intensified CCD

detector, a net rejection of better than 10-9 of all FUV and visible out-of-band

emissions is achieved.

The substantial advances in the area of the FUV coating technology greatly

enhance what can now be achieved in terms of FUV filtering and imaging. The

ability to quantitatively separate spectral features means that where previously,

60% to 80%, or more, of the measured signal was contaminant, now 90% to 99%

of the signal is the spectral feature of interest. The IS'IV Ultraviolet lmager with

its superior f'fltering and imaging characteristics will provide about two orders of

magnitude improvement in performance over previous designs.
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FIGURE CAPTIONS

Figure 1. Change in the calculated reflectance of a 35-layer l'I-multilayer as the

optical thickness ratio(L/H) changes, where MgF2 is used as the low (L) and

LaF3 as the high (H) refractive index material. The Koppelmann limit for this

case is 89.6%.

Figure 2. Full width at half of the reflectance maximum of 35-layer H-stacks

calculated for a 45 ° angle of incidence at 135.5 nm, where H represents optical

thickness of a LaF3, and L optical thickness of MgF2 film.

Figure 3. The measured net transmittance (solid line) through three

narrowband reflection filters (dashed line) centered at 130.4 nm, and combined

with the transmission filter (dotted line). The reflection filters operate at 45"

angle of incidence. MgF2 and LaF3 are used as the low and high refractive index

materials, respectively. The peak transmittance is greater than 22%, with 5 run

bandwidth. The average blocking for out-of-band wavelengths up to 2500 nm is

better than 3x10-3% with transmittance less than 10-6% at 121.6 nm (see Fig. 7).

Figure 4. The measured net transmittance (solid line) through three narrowband

reflection filters (dashed line) centered at 135 rim, and combined with the

transmission filter (dotted line). The reflection filters which are designed using

MgF2 as the low and LaF3 as the high refractive index material operate at 45"

angle of incidence. The peak transmittance is greater than 38%, with 4.5 ran

bandwidth. The average blocking for out-of-band wavelengths up to 2500 nm is

better than 3x10-3% with transmittance less than 10-6% at 121.6 tam (see Fig. 7).



FIGURE CAPTIONS (Continued)

Figure 5. The measured net transmittance (solid line) through three broadband

reflection filters (dashed line) centered at 150 nm, and combined with the

transmission filter (dotted line). The reflection filters operate at 45" angle of

incidence. They are designed using MgF2 as the low and LaF3 as the high

refractive index material. The peak transmittance is close to 60%, with 10 nm

bandwidth. The average blocking for out-of-band wavelengths up to 2500 nm is

better than 3x10-3% with less than 5x10-6% transmittance for wavelengths

below 145 nm (see Fig. 7).

Figure 6. The measured net transmittance (solid line) through three broadband

reflection filters (dashed line) centered at 170 ran, and combined with the

transmission filter (dotted line). The reflection filters operate at 45" angle of

incidence. They are designed using MgF2 as the low and LaF3 as the high

refractive index material. The peak transmittance is close to 60%, with 11 nm

bandwidth. The average blocking for out-of-band wavelengths up to 2500

nm is better than 3x10-3% with less than 5x10-6% transmittance for

wavelengths below 130 nm (see Fig. 7).

Figure 7. The total response of the Ultraviolet Imager filters (log. scale).

Circles (o) represent response of OI line filter at 130.4 ran, squares (_) response

of OI line filter at 135.6 ran, diamonds (0) response of LBH short band filter,

and triangles (A) represent response of the f'flter for LBH long band.
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